Exercises:

1. Solve Exercise 21.D.5 in MWG.

2. Solve Exercise 21.D.10 in MWG.

3. Read Section 8.4 in Börgers (2014) and solve Exercise 8.6.e.
 Let me know if you do not have a copy of the book.

4. Gibbard-Satterthwaite (harder)
 Consider the Gibbard-Satterthwaite setting from the lecture: \(X \) denotes the set of alternatives, \(|X| \geq 3 \), and \(R_i = \mathcal{P} \) for all agents \(i \), where \(\mathcal{P} \) denotes the set of all rational preference profiles without indifferences.

 Given a preference \(P_i \) of agent \(i \), denote by \(r_1(P_i) \) the alternative that is ranked first under preference \(P_i \) (and analogously for \(r_k(P_i) \)).

 (a) Show: Suppose the social choice function \(f \) is dominant-strategy incentive compatible. Then \(f \) is monotonic.

 (b) Show: Suppose the social choice function \(f \) is dominant-strategy incentive compatible and onto.
 Then \(f \) is Pareto efficient.

Suppose from now on that there are only two agents, 1 and 2, and consider a social choice function \(f \) that is dominant-strategy incentive compatible and onto.

(c) Let \(x, y \in X \), \(x \neq y \) and consider a preference profile \((P_1, P_2) \) such that \(r_1(P_1) = r_2(P_2) = x \), \(r_2(P_1) = r_1(P_2) = y \), and suppose that \(f(P_1, P_2, \cdot) = x \). Show that \(f(P_1, P_2) = x \) for all \((P_1, P_2) \) such that \(r_1(P_1) = x \).

(d) Repeating the previous argument for all pairs of alternatives yields two sets \(X_1 \subseteq X \) and \(X_2 \subseteq X \) such that \(z \in X_1 \) if and only if \(r_1(P_1) = z \) implies \(f(P_1, P_2) = z \) (and \(z \in X_2 \) if and only if \(r_1(P_2) = z \) implies \(f(P_1, P_2) = z \)).
 Show that \(X_1 = X \). What do you conclude?
 (Hint: Use the previous part! Argue that \(X_0 = X \setminus \{X_1 \cup X_2\} \) contains at most one alternative and hence \(X_1 \cup X_2 \) contains at least two distinct alternatives. Argue then that either \(X_1 \) or \(X_2 \) must be empty. Using the previous part you can show now that \(X_0 \) must also be empty.)