Exercises:

1. **Interdependent value auction**

 Suppose there is one object for sale and \(N \) potential buyers. Each agent privately observes a signal \(X_i \), which is independently and identically distributed on \([0, X]\) with cdf \(F \) and density \(f \). Denote by \(G = F_{(1:N-1)} \) the cdf of the first-order statistic of \(N - 1 \) of these random variables.

 Buyers have quasi-linear utilities: in case of winning the object, buyer \(i \) gets utility \(v(x_i, x_{-i}) - p \), where \(p \) denotes the payment made, and he gets utility of 0 in case of not winning. Suppose that \(v \) is positive, strictly increasing in all signals, symmetric in the last \(N - 1 \) signals, and denote by \(v(x_i, y) \) the expected valuation of agent \(i \) given he received signal \(x_i \) and the highest signal among all other signals has value \(y \).

 (a) Show: In a second price auction, each agent bidding according to the bid function \(\beta(x_i) = v(x_i, x_i) \) is a Bayes-Nash equilibrium.

 Is it a dominant strategy to follow this bid function? Is it an ex-post equilibrium?

 (b) Consider an open English auction. A symmetric strategy in an English auction is a collection \(\beta = (\beta^N, \beta^{N-1}, \ldots, \beta^2) \) of \(N - 1 \) functions \(\beta^k : [0, X] \times \mathbb{R}^{N-k} \rightarrow \mathbb{R}_+ \). The interpretation is that \(\beta^k(x, p_{k+1}, \ldots, p_N) \) is the price at which bidder 1 will drop out of the auction if the number of bidders who are still active is \(k \), his own signal is \(x \), and the prices at which the other \(N - k \) bidders dropped out were \(p_{k+1} \geq p_{k+2} \geq \ldots \geq p_N \).

 Describe a symmetric Bayes-Nash equilibrium of the open English auction and show that this strategy profile constitutes indeed an equilibrium.

 Is it an equilibrium in dominant strategies? Is it an ex-post equilibrium?

 (c) Show that the symmetric bidding strategies \(\beta(x) = \frac{1}{v(x)} \int_0^x v(y, y) dG(y) \) form a Bayes-Nash equilibrium of the first-price auction.

 (d) Suppose \(N = 2 \), bidder \(i \)'s valuation is \(v_i(\theta_i, \theta_j) = \eta \theta_i + (1 - \eta) \theta_j \). For which \(\eta \) is the outcome of the second-price auction efficient?

2. Consider the Akerlof framework from the lecture.

 Definition 1. A competitive equilibrium in the Akerlof model is a price \(p^* \) and a set \(\Theta^* \) of seller types who trade such that

 \[
 \Theta^* = \{ \theta | R(\theta) \leq p^* \} \quad \text{and} \quad p^* = \mathbb{E}[\theta | \theta \in \Theta^*].
 \]

 Suppose the distribution function of \(\theta \) is

 \[
 F(\theta) = \begin{cases}
 0 & \text{for } \theta < 1 \\
 \theta - 1 & \text{for } 1 \leq \theta \leq 2 \\
 1 & \text{for } 1 < \theta
 \end{cases}
 \]

 and \(R(\theta) = 0.9 \cdot \theta \).

 Describe a competitive equilibrium of this model.