Exercises:

1. Look again at Exercise 23.C.9 and prove the remaining direction.

2. Suppose there are two agents and the question whether a bridge should be built. The net valuation of
 agent i for having a bridge is θ_i, which is independently and uniformly distributed on $[-3,3]$. Utilities
 are quasi-linear: agent i gets utility $\theta_i + t_i$ if the bridge is built and t_i otherwise, where t_i denotes the
 transfer he receives.

 (a) Assume agents can either vote in favor or against the bridge and there are no transfers. The bridge
 will be built only if both agents vote for it. What is an equilibrium in dominant strategies? What
 is the expected aggregate welfare if agents follow these strategies?

 (b) Suppose that agents’ valuations were observed by a utilitarian social planner. Which decision rule
 should he implement and what is the resulting expected aggregate utility (that is, the sum of the
 agents expected utilities)?

 (c) Assume that transfers are feasible. What is the expected aggregate utility if the Pivotal mechanism
 is implemented?

3. Solve Exercise 23.C.10 in MWG.
 Assume throughout the exercise that (23.C.8) is a necessary condition for $(k^*, t_1, ..., t_I)$ to be truthfully
 implementable in dominant strategies. In part c insert “implementable” before “ex post efficient social
 choice function” and suppose that $V_i(\theta_{-i})$ is I times continuously differentiable for each i.

4. Interdependent value auction
 Suppose there is one object for sale and N potential buyers. Each agent privately observes a signal X_i, which
 is independently distributed on $[0, X]$ with density f.

 Buyers have quasi-linear utilities, i.e. in case of winning the object buyer i has utility $v(x_i, x_{-i}) - p$,
 where p denotes the payment made and utility of 0 in case of not winning. Suppose that v is increasing
 in all signals, symmetric in the last $N-1$ signals, and denote by $\bar{v}(x_i, y)$ the expected valuation of agent
 i given he received signal x_i and the highest signal among all other signals has value y.

 Show: In a second price auction, each agent bidding according to the bid function $\beta(x_i) = \bar{v}(x_i, x_i)$ is a
 Bayes-Nash equilibrium.

 Is it a dominant strategy to follow this bid function? Is it an ex-post equilibrium?