Part A

Exercises:

1. Solve Exercise 21.D.5 in MWG.

2. Solve Exercise 21.D.10 in MWG.

3. **Gibbard-Satterthwaite** (harder)

 Consider the Gibbard-Satterthwaite setting from the lecture: \(X \) denotes the set of alternatives, \(|X| \geq 3\), and \(R_i = \mathcal{P} \) for all agents \(i \), where \(\mathcal{P} \) denotes the set of all rational preference profiles without indifferences.

 Given a preference \(P_i \) of agent \(i \), denote by \(r_1(P_i) \) the alternative that is ranked first under preference \(P_i \) (and analogously for \(r_k(P_i) \)).

 (a) Show: Suppose the social choice function \(f \) is dominant-strategy incentive compatible. Then \(f \) is monotonic. (For the definition of monotonicity, see Definition 21.E.4 on page 808 in MWG.)

 (b) Show: Suppose the social choice function \(f \) is dominant-strategy incentive compatible and onto. Then \(f \) is Pareto efficient.

 Suppose from now on that there are only two agents, 1 and 2, and consider a social choice function \(f \) that is dominant-strategy incentive compatible and onto.

 (c) Let \(x, y \in X \), \(x \neq y \) and consider a preference profile \((\bar{P}_1, \bar{P}_2) \) such that \(r_1(\bar{P}_1) = r_2(\bar{P}_2) = x \), \(r_2(\bar{P}_1) = r_1(\bar{P}_2) = y \), and suppose that \(f(\bar{P}_1, \bar{P}_2) = x \). Show that \(f(P_1, P_2) = x \) for all \((P_1, P_2)\) such that \(r_1(P_1) = x \).

 (d) Repeating the previous argument for all pairs of alternatives yields two sets \(X_1 \subseteq X \) and \(X_2 \subseteq X \) such that \(z \in X_1 \) if and only if \(r_1(P_1) = z \) implies \(f(P_1, P_2) = z \) (and \(z \in X_2 \) if and only if \(r_1(P_2) = z \) implies \(f(P_1, P_2) = z \)).

 Show that \(X_1 = X \). What do you conclude?

 (Hint: Use the previous part! Argue that \(X_0 = X \setminus \{X_1 \cup X_2\} \) contains at most one alternative and hence \(X_1 \cup X_2 \) contains at least two distinct alternatives. Argue then that either \(X_1 \) or \(X_2 \) must be empty. Using the previous part you can show now that \(X_0 \) must also be empty.)

Part B

4. Suppose there are 7 voters and two alternatives, \(A \) and \(B \). Voter \(i \) values alternative \(A \) at 0 and alternative \(B \) at \(\theta_i \), where \(\theta_i \) is uniformly and independently distributed on \([-2, 1]\) for each \(i \).

Which majority requirement maximizes utilitarian welfare?

5. Consider the following marriage market with four men and four women.

Preferences are strict and given by

\[
\begin{align*}
 m_1 : & \quad w_3, \quad w_2, \quad w_1, \quad w_4 \\
 m_2 : & \quad w_2, \quad w_1, \quad w_3, \quad w_4 \\
 m_3 : & \quad w_3, \quad w_4, \quad w_1, \quad w_2 \\
 m_4 : & \quad w_4, \quad w_3, \quad w_2, \quad w_1 \\
 w_1 : & \quad m_4, \quad m_3, \quad m_2, \quad m_1 \\
 w_2 : & \quad m_3, \quad m_4, \quad m_1, \quad m_2 \\
 w_3 : & \quad m_2, \quad m_1, \quad m_4, \quad m_3 \\
 w_4 : & \quad m_2, \quad m_3.
\end{align*}
\]

In the following, you may use without proof that

\[
\mu = \begin{pmatrix}
 w_1 & w_2 & w_3 & w_4 \\
m_3 & m_1 & m_4 & m_2
\end{pmatrix}
\]
is a stable matching. You may use all results from the lecture without proof.

(a) Show that

\[\mu_2 = \begin{array}{cccc}
 w_1 & w_2 & w_3 & w_4 \\
 m_2 & m_4 & m_1 & m_3
\end{array} \]

is a stable matching.

(b) Find the men-optimal stable matching \(\mu_M \) and the women-optimal stable matching \(\mu_W \).